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ABSTRACT

Combining knowledge derived from both syllable- (100-250 ms)
and phone-length (40-100 ms) intervals in the automatic speech
recognition process can yield performance superior to that ob-
tained using information derived from a single time scale alone.
The results are particularly pronounced for reverberant test con-
ditions that have not been incorporated into the training set. In
the present study, phone- and syllable-based systems are com-
bined at three distinct levels of the recognition process — the
frame, the syllable and the entire utterance. Each strategy suc-
cessfully integrates the complementary strengths of the individ-
ual systems, yielding a significant improvement in accuracy on
a small-vocabulary, naturally spoken, telephone speech corpus.
The syllable-level combination outperformed the other two meth-
ods under both relatively pristine and moderately reverberant
acoustic conditions, yielding a 20-40% relative improvement over
the baseline.

1. SYLLABLES IN ASR

Most current automatic speech recognition (ASR) systems for En-
glish rely predominantly on phone-scale information. Phonologi-
cal and psychoacoustic evidence suggests, however, that syllable-
length intervals also play an important role in spoken language
processing by human listeners [6, 12], particularly under adverse
acoustic conditions, and thus may prove of utility in speech recog-
nition by machines [4].

Our analysis of machine recognition errors indicates that, to a
certain degree, syllable-based information complements phone-
based information and that these two distinct knowledge repre-
sentations can be used in combination to provide better perfor-
mance than is possible using either representation alone. This
approach may be particularly advantageous for recognition of
speech spoken under adverse acoustic conditions (such as back-
ground noise or reverberation) that typically results in a pro-
nounced deterioration of ASR performance [11]. In this paper
we demonstrate that using appropriate combination methods to
integrate multiple, complementary representations of the speech
input can reduce the deleterious impact of such acoustic interfer-
ence (for an example of a more syllable-focused design see [5]).

1Su-Lin Wu is now with Nuance Communications.

2. RECOGNITION SYSTEMS

2.1. Speech Material

The speech materials used in the current set of experiments were
recorded over the telephone from speakers of both genders and in-
clude native speakers from all major dialect regions of the United
States as well as non-native speakers. The utterances consist of
continuous, naturally spoken numbers from a vocabulary of 32
separate words (e.g., “two hundred eleven”) and are derived from
the Oregon Graduate Institute’s Numbers corpus [1].

Approximately 1.6 hours (about 3,500 utterances containing
14,000 word tokens) of material were used for training and two
separate 40-minute portions (about 1,200 utterances containing
4,700 word tokens) were used for development and evaluation
testing. The evaluation set was held back from use until all recog-
nition parameters had been determined with the training and de-
velopment material.

Artificially reverberated versions of the development and evalu-
ation test material were used as exemplars of adverse conditions
not represented in the systems’ training data. These materials
were created by convolving the original (“clean”) speech signals
with a room impulse response whose reverberation time (RT60)
was 0.5 s and whose direct-to-reverberant energy ratio was 0 dB.

2.2. Phone-based System (Baseline)

The baseline system was a hybrid hidden Markov
model/multilayer perceptron (HMM/MLP) system in which
HMM emission probabilities were estimated by a multilayer
perceptron, as described in [13]. The input representation was
eighth-order log-RASTA-PLP [8] computed over 25-ms frames
every 10 ms, supplemented with delta features calculated over a
9-frame window. RASTA-PLP features incorporate filtering of
spectral trajectories in critical-band-like channels using a filter
with a 1–12 Hz passband. For purposes of probability estimation
the baseline system used an MLP having a single hidden layer
with 400 hidden units, a 9-frame input context window and 32
context-independent phone output categories.

The system used a multiple-pronunciation lexicon derived from
phonetic transcription (by trained human listeners) of the Num-
bers corpus [1]. An embedded Viterbi alignment process opti-
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Figure 1: Modulation spectrogram feature extraction method. See text (Subsection 2.3) for a description of the algorithm.

mized the pronunciations, the models for minimum phone dura-
tion and the training labels. The language model was a backoff-
bigram grammar learned from word transcriptions of the same
data set used for acoustic training.

2.3. Syllable-based Systems

Two hybrid HMM/MLP syllable-based systems were also de-
veloped. Syllable-oriented design elements were incorporated
into each system by using an alternative feature analysis method,
the modulation spectrogram [7], and lengthening the MLP input
window to 17 frames. One of the syllable-based systems used
half-syllable recognition units, while the other used conventional
context-independent phone units. The language model was the
same as that used in the baseline system.

Modulation Spectrogram. Both experimental systems used
modulation spectrogram features to incorporate syllable timing at
the signal processing stage. In this process [7, 10], illustrated in
Figure 1, the speech signal is decomposed into 15 quarter-octave
channels using an FIR filterbank, and an amplitude envelope is
calculated for each channel via rectification and lowpass filtering.
The envelope signals are themselves filtered to simulate temporal
response properties of the auditory cortex, then compressed and
normalized. The normalization is performed by finding the point
with the largest magnitude across all channels over the entire ut-
terance and dividing the envelope signals by that magnitude. Two
different modulation filters process the envelope signals in paral-
lel: a lowpass filter with a cutoff frequency of 8 Hz and a bandpass
filter with cutoff frequencies of 2 Hz and 8 Hz. This rather severe
modulation filter blurs envelope fluctuations at the phonetic seg-
ment scale (12–20 Hz), while emphasizing spectral changes at
the syllabic time scale. The normalization is applied separately to
the outputs of the lowpass and bandpass envelope filters. These
features have many characteristics in common with RASTA-PLP
but differ in a number of respects. The key difference is the much
narrower (and steeper) filter applied to the envelope signals in the
modulation spectrogram processing which produces features that
are more temporally-smeared than those produced with RASTA-
PLP. A more recent, enhanced version of the modulation spectro-

gram processing is described in detail in [9].

Lengthening the MLP Input Window. The baseline phone-
oriented system uses an MLP input window of 9 frames (roughly
equivalent to 105 ms of the speech signal). By lengthening the
context window to 17 frames (equivalent to 185 ms), syllable-
scale timing is incorporated at the input of the probability estima-
tion stage. In principle, the MLP can use this longer window to
capture dependencies useful for the estimation of the conditional
probabilities of longer time-scale states.

Syllable-based Recognition Units.To further emphasize syl-
lable time scales, one of the syllable-based systems uses half-
syllable recognition units instead of phones. 124 half-syllables
were derived from the OGI Numbers lexicon described above by
dividing each syllable at the midpoint of the nucleus. The re-
sulting recognition unit typically covers a longer stretch of the
speech signal than the phone. The lexicon and training labels for
the syllable-based system were adapted from automatic syllabifi-
cation of the phone version, but were not further optimized.

3. RECOGNIZER COMBINATION
METHODS

We experimented with combining the baseline phone-based sys-
tem with the syllable-based systems at three levels of the decod-
ing process: at the frame, syllable, and whole-utterance stages.
The simplest to implement, frame-level combination, multiplies
corresponding phone probabilities at the output of the MLPs from
each recognition system. Functionally, probabilities from corre-
sponding phone outputs are used at the same time step and hence
the two recognition streams are closely coordinated. The one-
to-one correspondence needed for this combination method pre-
cluded using syllable-based recognition units. For this reason the
syllable system with context-independent phone recognition units
was used instead.

Combining two recognition streams at the syllable level entails
multiplying corresponding syllable-string likelihoods at the end
of syllable hypotheses during the decoding process. We used



Individual Systems Clean Reverb

Phone-based System (baseline) 6.7% 28.0%
Syllable-based System with Phone Units 8.6% 25.8%
Syllable-based System with Syl. Units 10.0% 30.1%

Table 1: Word error rates associated with each system for the
clean and reverberant evaluation test sets.

HMM-recombination [2] (similar to HMM-decomposition) to
implement this step. Because the two recognition streams interact
only at the end points of syllables, they may be desynchronized
elsewhere. This potential asynchrony permits the use of half-
syllable recognition units since the outputs of the neural networks
need not be as closely coordinated as with frame-level combina-
tion.

The utterance combination method, discussed in more detail in
[15], multiplies corresponding word-string likelihoods at the end
of the entire utterance. This combination method is implemented
by merging and rescoring N-best lists. Each recognizer gener-
ates a maximum of 150 hypotheses, which are then rescored us-
ing both recognition systems. The scores from the two systems
are simply added together to determine the overall score for a
hypothesis and the best scoring hypothesis is designated as the
recognized word string. Because the two recognition streams in-
teract only at the end of the utterance, they can be decoded asyn-
chronously, thus permitting the use of half-syllable units.

4. RESULTS

Although each recognition system performs moderately well on
its own, combining the syllable-based systems with the baseline
results in significantly lower error rates. As illustrated in Table 1,
neither of the syllable-based systems is as accurate as the baseline
system for the “clean” test condition. This is not surprising since
the syllable-based elements in the recognizers smear information
germane to phonetic identity across time. In the case of the re-
verberant test condition the syllable-based system with phone-
based recognition units achieves a slighter higher performance
level than the baseline as a consequence of the modulation spec-
trogram features and the wider neural network context window
(both of which are designed to accommodate temporal smearing
of the speech information).

Combining the experimental syllable-based systems with the
baseline system results in performance improvements using any
of the combination methods outlined above, as shown in Table 2.
The gain in performance for each case is larger than that achieved
by merely increasing the number of MLP parameters. Of the
three methods, the syllable-level combination displays the largest
improvement over the baseline, with 20% relative improvement
for clean speech and 40% relative improvement for reverber-
ant speech. The frame-level combination is almost as effective,
while having a lower implementation cost. Combination at the
utterance-level, while still exhibiting considerable improvement
in performance compared to the baseline, manifests the smallest
performance gain.

Combining
Method

Syllable-based System
Combined with Baseline

Clean Reverb

Frame System with Phone Units 5.8% 17.7%
Syllable System with Syllable Units 5.1% 16.7%

Utterance System with Syllable Units 5.5% 19.6%

Table 2: Word error rates produced by combining the baseline
phone-based system and the experimental syllable-based systems
for the clean and reverberant evaluation test sets.

5. ERROR ANALYSIS

Inspection of the individual recognizers’ errors helps explain the
improvement obtained via these methods of combination. The
recognizers generally make different types of errors and the com-
bination methods allow correct answers to override those that are
incorrect. A simple error analysis method (based on [3]) quan-
tifies the differences between any two systems. The recognition
outputs are compared with the actual word strings to measure the
degree of accuracy and concordance between systems. The out-
puts from the two recognizers (corresponding to a given correct
word) can be categorized into one of five categories:

Both Correct Both systems recognized the word correctly.

Phone System Only Correct Only the baseline system recog-
nized the word correctly.

Syllable System Only Correct Only the experimental syllable-
based system recognized the word correctly.

Both Incorrect and Different Both systems recognized a given
word incorrectly, but produced different hypotheses.

Both Incorrect and Identical Both systems recognized a given
word incorrectly, but produced the same hypothesis.

Tables 3 and 4 illustrate this analysis for a syllable-based system
and the baseline system. Analogous procedures for frame-level,
syllable-level and utterance-level analyses are described in [14].

Identical errors are generally the most difficult type to compen-
sate for using simple combination methods, while other types of
error are more readily corrected. For this reason, the proportion
of identical errors can serve as an indirect measure of the poten-
tial for improvement via combining. For each case, the percent-
age of identical errors is relatively small (and hence the potential
for decreasing the error rate through combination is high). Com-
prehensive comparisons between the baseline system and other
experimental systems [14] show that introducing syllable-based
design elements reduces the number of identical errors between
systems and thus increases the potential for gains in performance.

6. CONCLUSIONS AND FUTURE WORK

The combination of a relatively conventional phone-based ASR
system with an experimental system incorporating some measure
of syllable-time-scale information produced significant perfor-
mance improvements for both clean and reverberant test material.
The superiority of the syllable-level combining strategy may re-
flect the temporal organization of speech. For practical purposes



Both Correct
Phone System Only

Correct
Syllable System
Only Correct

Both Incorrect and
Different

Both Incorrect and
Identical

word count 4142 331 153 76 92
percentage 86.4% 6.9% 3.2% 1.6% 1.9%

Table 3: Comparing recognition behavior of the phone-based system (baseline) and the syllable-based system with syllable output
units for clean speech (development test set).

Both Correct
Phone System Only

Correct
Syllable System
Only Correct

Both Incorrect and
Different

Both Incorrect and
Identical

word count 2863 754 714 423 234
percentage 57.4% 15.1% 14.3% 8.5% 4.7%

Table 4: Comparison of the phone-based system and the syllable-based system with syllable output units for reverberant speech
(development test set). The total word count does not equal that of the clean set due to the variability in the number of insertions.

of implementation, however, the simpler frame-level combination
appears more attractive. In collaboration with Cambridge Univer-
sity’s Connectionist ASR group, similar combination strategies
are now being explored for the 1998 Broadcast News evaluation.
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