
 

ABSTRACT

 

An automatic transcription system has been developed to label
and segment phonetic constituents of spontaneous American
English without benefit of a word-level transcript. Instead,
special-purpose neural networks classify each 10-ms frame of
speech in terms of articulatory-acoustic-based phonetic features
and the feature clusters are subsequently mapped to phonetic-
segment labels using multilayer perceptron networks. The
phonetic labels generated by this system are 80% concordant
with the labels produced by human transcribers and the
segmental boundaries deviate from manual segmentation by an
average of 11 ms. The automatic transcription system thus
generates phonetic labels and segmentation comparable in
quality to those produced by human transcribers, and therefore
may prove useful for phonetic annotation of novel linguistic
corpora, as well as facilitating development of pronunciation
models for automatic speech recognition systems.

 

1.  INTRODUCTION

 

Current-generation speech recognition (ASR) systems generally
rely on automatic-alignment procedures to train and develop
phonetic-segment models. Although these automatically
generated alignments are designed to approximate the actual
phones contained in an utterance they are often erroneous in
terms of both phonetic identity and segmentation boundaries.
Over forty percent of the phonetic labels generated by state-of-
the-art automatic alignment systems differ from those generated
by phonetically trained individuals [3]. Moreover, the
boundaries generated by these automatic alignment systems
differ by an average of 32 ms (40% of the mean phone duration)
from the hand-labeled material [3]. The quality of automatic
labeling and segmentation is potentially of great significance for
large-vocabulary ASR system performance since word-error rate
appears to be largely dependent on the accuracy of phone
recognition and segmentation [3]. Moreover, a substantial
reduction in word-error rate is, in principle, achievable when
phone recognition is both extremely accurate and tuned to the
phonetic composition of the recognition lexicon [5]. An accurate
method of automatic phonetic transcription could potentially
facilitate development of ASR systems for novel material, both
within and across languages, as well as increase robustness with
respect to acoustic interference and variation in speaking style
and pronunciation.

The current study describes an automatic system for automatic
labeling of phonetic segments (ALPS) in utterances drawn from
a corpus of spontaneous American English (OGI Numbers95).
The performance of the ALPS system is comparable in accuracy
and reliability to that of human transcribers and is achieved
without using a word-level transcript (as automatic-alignment
systems require). The system’s initial classification (using

special-purpose neural networks) is based on recognizing
articulatory-acoustic phonetic features (AFs) rather than phones.
These phonetic features are subsequently mapped to phonetic-
segment labels using a separate set of neural networks that also
form the basis of delineating the segmental boundaries.

 

2.  TRANSCRIPTION SYSTEM OVERVIEW 

 

The speech signal is processed in several stages (cf. Figure 1).
First, a power spectrum is computed every 10 ms (over a 25-ms
window) and this spectrum partitioned into quarter-octave
channels between 0.3 and 4 kHz. The power spectrum is
logarithmically compressed in order to preserve the general
shape of the spectrum distributed across frequency and time (an
example of which is illustrated in Figure 2 for the manner-of-
articulation feature, 

 

vocalic

 

).

An array of independent, temporal flow neural networks (cf.
Section 4) classify each 25-ms frame along five articulatory-
based, phonetic-feature dimensions: (1) place and (2) manner of
articulation, (3) voicing, (4) lip-rounding and (5) front-back
articulation (for vocalic segments). A separate class was derived
for “silence” (labeled as “null” in each feature dimension).
These phonetic-feature labels are combined and serve as the
input to a multilayer perceptron (MLP) network that performs a
preliminary classification of phonetic identity (e.g., [f] [ay] [v]).
The output of these networks is processed by a Viterbi-like
decoder to produce a sequence of phonetic-segment labels along
with boundary demarcations associated with each segment. 

 

3.  CORPUS MATERIALS

 

The ALPS transcription system was evaluated using spontaneous
speech material from the Numbers95 corpus [1], collected and
phonetically annotated (i.e., labeled and segmented) at the
Oregon Graduate Institute. This corpus contains the numerical
portion (mostly street addresses and phone numbers) of
thousands of telephone dialogues and possesses a lexicon of 37
words and an inventory of 29 phonetic segments. The speakers
contained in the corpus are of both genders and represent a wide
range of dialect regions and age groups.

The ALPS system was trained on ca. 2.5 hours of material and a
separate 15-minute, cross-validation set was used for training the
networks and setting the appropriate threshold parameters.
Testing and evaluation of the transcription systems was
performed on an independent set of ca. one hour’s duration. 

 

4.  TEMPORAL FLOW MODEL NETWORKS

 

In the ALPS system initial classification of articulatory-acoustic
features is performed by temporal flow model (TFM) networks
[10]. These networks support arbitrary link connectivity across
multiple layers of nodes, admit feed-forward, as well as
recurrent links and allow variable propagation delays to be

 

AUTOMATIC PHONETIC TRANSCRIPTION OF 
SPONTANEOUS SPEECH (AMERICAN ENGLISH)

 

Shuangyu Chang, Lokendra Shastri and Steven Greenberg

 

International Computer Science Institute
1947 Center Street, Berkeley, CA 94704, USA
{shawnc, shastri, steveng}@icsi.berkeley.edu



 

associated with each of the links. The recurrent links in TFM
networks provide an effective means of smoothing and
differentiating signals, as well as detecting the onset (and
measuring the duration) of specific features. Using multiple
links with variable delays allows a network to maintain an
explicit context over a specified window of time and thereby
makes it capable of performing spatio-temporal feature detection
and pattern matching. Recurrent links, used in tandem with
variable propagation delays, provide a powerful mechanism for
simulating certain properties (such as short-term memory,
integration and context sensitivity) essential for processing time-
varying signals such as speech. TFM-based networks have been
shown to perform as well as, if not better than, standard neural
networks (such as MLPs) using an architecture that is far more
efficiently constructed (cf. Table 1). In the past, TFM networks
have been successfully applied to a wide variety of pattern-
classification tasks including phoneme classification [9], optical
character recognition [8] and syllable segmentation [7]. The
TFM networks used to classify articulatory features in the ALPS
system possess between 3,000 and 8,000 adjustable weights.

 

5. SPECTRO-TEMPORAL PROFILES

 

The architecture of the TFM networks used for classification of
the articulatory acoustic features was developed using a three-
dimensional representation of the log-power-spectrum
distributed across frequency and time that incorporates both the
mean and variance of the energy distribution associated with
multiple (typically, hundreds or thousands of) instances of a
specific phonetic feature or segment derived from the
phonetically annotated, OGI Stories-TS corpus [1]. Each
phonetic-segment class was mapped to an array of articulatory

phonetic features, and this map used to construct the spectro-
temporal profile (STeP) for a given feature class. For example,
the STeP for the manner feature, 

 

vocalic 

 

(cf. Figure 2

 

)

 

, was
derived from a summation of all instances of vowel segments in
the corpus. The STeP extends 500 ms into the past, as well as
500 ms into the future relative to the reference frame, 

 

t

 

0

 

, thereby
spanning an interval of 1 second. This extended window of time
is designed to accommodate co-articulatory context effects. The
frequency dimension is partitioned into quarter-octave channels.
The variance associated with each component of the STeP is
color-coded and identifies those regions which most clearly
exemplify the energy-modulation patterns across time and
frequency associated with the feature of interest (cf. Figure 2)
and can be used to adjust the network connectivity in appropriate
fashion.

 

6. PHONETIC-SEGMENT DECODING

 

An MLP network, possessing a single hidden layer of 400 units,
was used to map the phonetic features derived from the TFM
networks onto phonetic-segment labels. The input to the MLP
used a context window of 9 frames (105 ms). The output of this
MLP contains a vector of phone-probability estimates for each
10-ms frame. This matrix of phonetic-segment probabilities is
converted into a linear sequence of phone labels and
segmentation boundaries via a decoder. A hidden-Markov-model
(HMM) was applied to impose a minimum-length constraint on
the duration associated with each phonetic-segment (based on
segmental statistics of the training data), and a Viterbi-like
decoder used to compute the sequence of phonetic segments
over the entire length of the utterance. This bipartite decoding
process is analogous to that used for decoding word sequences in
automatic speech recognition systems. However, in the present
application, the “lexical” units are phones, rather than words,
and the “words” contain clusters of articulatory features rather
than phones. It is also possible to convert the frame-level,
phonetic-feature data into phone sequences by using a threshold
model derived from the statistical characteristics of a separate
(validation) data set. In this instance a minimum-duration
constraint is imposed as a means of smoothing the output of the
phone-selection process. Both the threshold and HMM-based
approaches produce equivalent results (Table 1).
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Figure 1. Schematic description of the ALPS automatic
transcription system using articulatory-acoustic features to label
and segment phones in spontaneous speech.

Figure 2. A spectro-temporal profile of the phonetic feature,
vocalic, derived from the superposition of thousands of
instances of this feature in the OGI Stories-TS corpus [1].
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Network Type TFM + MLP MLP MLP

Context (Frames) 9 9 19

Hidden Units in MLP 400 800 800

Total Parameters 130,600 128,800 241,000

Frame Accuracy (%) 79.4 73.4 79.4

Table 1. Frame-level phonetic-segment classification accuracy
for different neural-network architectures and context lengths.



 

A separate TFM neural network was used to compute the precise
location of the segment boundaries based on the matrix of phone
probabilities distributed across frames. The identity of the phone
segments combined with their associated boundaries form the
output of the system’s phonetic transcription (cf. Figure 3). 

 

7. EVALUATION OF THE ALPS SYSTEM

 

7.1 Articulatory-Acoustic Feature Classification

 

The accuracy of articulatory-acoustic feature classification
ranges between 79% (place of articulation) and 91% (voicing)
(Table 2), and is comparable or superior to the performance
obtained by Kirchhoff [4] using MLP networks. In the current
study AF classification was performed by manually tuned TFM
networks, based on information contained in the STePs
associated with each of the relevant articulatory-based features.

 

7.2 Phonetic-Segment Classification

 

Table 1 illustrates the capability of the ALPS system to map
articulatory-acoustic features onto phonetic-segment labels
using an MLP network operating on the AF output of the TFM
networks. The table compares the performance of this hybrid
system with that of two different MLP-based phone
classification systems. The TFM/MLP system significantly
outperforms the standard MLP phone classifier (which uses 9
frames of context) and is comparable in classification accuracy
to an MLP using 19 frames (205 ms) of context. However, the
TFM/MLP system achieves this level of performance with less
than half of the parameters required by the MLP classifier alone. 

The frame accuracy of phonetic classification associated with
the hybrid TFM/MLP system can be increased from 79.4% to
82.5% by 

 

reducing

 

 the temporal resolution of the inputs to the
TFM and MLP neural networks by a factor of four (but not by
factors of two or eight) and then combining the output with that
of an MLP processing the original (10-ms) resolution features.
This experiment suggests that there is information contained in
ca. 40-ms-length segments of particular importance for phonetic
classification.

 

7.3

 

 

 

Temporal Location of Phonetic Labeling Errors

 

It is of interest to ascertain the frame location of phonetic-
segment classification errors as a means of gaining insight into
the origins of mislabeling this material. Specifically, it is
important to know whether the classification errors are randomly
distributed across frames or are concentrated close to the
segment boundaries. The data illustrated in Figure 4 indicate that
a disproportionate number of errors are concentrated near the
phonetic-segment boundaries in regions inherently difficult to
classify accurately as a consequence of the transitional nature of
phonetic information in such locations. Nearly a third of the
phone classification errors are associated with boundary frames
accounting for just 17% of the utterance duration. The accuracy
of phone classification is only 61% in the boundary frames, but
rises to 80% or higher for frames located in the central region of
the phonetic segment. 

Figure 4. Phonetic-segment classification performance as a
function of frame (10 ms) distance from the manually defined
phonetic-segment boundary. Contribution of each frame to the
total number of correct (green) and incorrect (orange) phonetic
segments classified by the ALPS system is indicated by the bars.
The cumulative performance over frames is indicated (dashed
lines), as is the percent correct phone classification for each
frame (green squares, with a double-exponential, solid-line fit to
the data).

Figure 3. The labels and segmentation generated by the ALPS transcription system for the utterance “Nine, seven, two, three, two”
are compared to those produced manually. The top row shows the phone sequence produced by the ALPS system. The tier directly
below is the phone sequence produced by a human transcriber. The spectrographic representation and waveform of the speech signal
are shown below the phone sequences as a means of evaluating the quality of the phonetic segmentation. The manual segmentation is
marked in purple while the automatic segmentation is illustrated in orange.

Phonetic-Feature Parameter

Place Front/Back Voicing Rounding Manner

78.8 83.4 91.1 85.6 84.4

Table 2. Frame-level accuracy (percent correct) of phonetic
feature classification for the ALPS transcription system.



 

7.4

 

 

 

Phonetic-Segment Decoding

 

The performance of two separate methods of decoding phonetic
sequences (one based on HHMs, the other on a threshold model
- cf. Section 6) are compared in Table 3. The decoding
techniques produce essentially equivalent results. However, the
threshold model produces slightly fewer substitution errors than
the HMM procedure and may therefore be of greater utility
under certain conditions where fidelity of transcription is of
prime concern.

 

7.5 Phonetic Segmentation

 

The accuracy of phonetic segmentation can be evaluated by
computing the proportion of times that a phonetic segment onset
is correctly identified (“hits”) by the ALPS system relative to the
instances where the phone onset (as marked by a human
transcriber) is located at a different frame (“false alarms”). The
data in Table 4 indicate that the ALPS system matches the
segmentation of human transcribers precisely in ca. 40% of the
instances. However, automatic segmentation comes much closer
to approximating human performance when a tolerance level of
more than a single frame is allowed (76-84% concordance with
manual segmentation). The average deviation between the
manual and automatic segmentation is 11 ms, an interval that is
ca. 10% of the average phone duration in the Numbers95 corpus.

 

8. DISCUSSION AND CONCLUSIONS

 

The ALPS transcription system possesses certain advantages
over other methods of automatically labeling phonetic segments
in spontaneous speech. It does not require a word-level transcript
(as is the case with forced-alignment procedures and other
techniques, such as MAUS developed at the University of
Munich [6]). In addition, the ALPS system is likely to be
relatively robust in the presence of acoustic interference [4] and
speaking-style variation [2] since the initial classification is
based on a relatively small number of articulatory acoustic
features rather than on phones. Articulatory-acoustic features
also provide a means of more accurately delineating the phonetic
composition of spontaneous material since speech is rarely
spoken in perfectly canonical fashion. Often, specific
articulatory-acoustic features are either absent or their time-
course deviates from that of associated features within a
phonetic segment. Because most of the articulatory features used
to develop the ALPS system are also present in most other
languages of the world, it is inherently cross-linguistic in
capability and extensible to other corpora.

To date the ALPS system has been applied only to a single
corpus of relatively restricted phonetic composition. In the
future we intend to apply the system to more complex corpora of
American English, as well as to corpora of other languages.
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Frame Tolerance Hits False Alarms

±1  (10 ms) 38.4 58.5

±2  (20 ms) 76.0 20.9

±3  (30 ms) 83.7 13.2

Table 4. Accuracy of phonetic segmentation as a function of
the temporal tolerance window and partitioned into error type
(hits/false alarms).

Table 3. Percent error associated with phonetic-label decoding,
partitioned by error type, for two different decoding methods.

Procedure Substitutions Deletions Insertions Total

HMM 8.1 6.4 4.9 19.3

Threshold 6.9 8.4 4.3 19.5


