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Abstract-This paper describes a syllable-proximity 
evaluation task within the context of an automatic speech 
recognition application.  This task is well suited to a multiple-
information aggregation framework in which preliminary 
evaluations of separate information sources are combined to 
produce more accurate and reliable overall evaluation than 
would otherwise be the case.   An aggregation operator using 
fuzzy measures and a fuzzy integral is adopted that possesses 
a number of desirable properties and the fuzzy-measure 
parameters can be automatically learned from training data 
by re-casting the syllable-proximity evaluation as a 
classification problem. Experiments performed on 
spontaneous speech material demonstrate that the fuzzy-
integration-based aggregation approach has many 
advantages over alternative techniques in terms of both 
performance and interpretability of the system. 

I. INTRODUCTION  

An important class of real-world problems involving 
multiple information sources can be solved via a two-stage 
approach, often referred to as multiple-information 
aggregation.  In the first stage, a preliminary evaluation of 
each information source is obtained separately; in the 
second stage, the preliminary evaluations are combined to 
produce a more accurate and reliable evaluation than 
would otherwise be the case.  In this paper, we describe a 
syllable-proximity evaluation task in the context of an 
automatic speech recognition application (ASR) that is 
well suited to a multiple-information aggregation 
framework.   

The syllable-proximity evaluation is one component of a 
novel multi-tier model of speech recognition [1].  The 
objective is to compute the degree of proximity between an 
input syllable and a reference syllable based on partial 
proximity scores obtained individually along each of 
several articulatory-feature (AF) dimensions.  As described 
in the following section, multiple-information aggregation 
tasks, such as syllable-proximity evaluation, require 
appropriate aggregation operators that take into account 
not only the relative importance of various information 
sources but also the synergy and redundancy of 
information contained in subsets of these sources.  It is 
also desirable that parameters involved of the aggregation 
operator can be learned automatically from data, 
particularly when the interaction patterns of various 
information sources are not completely understood.  
Furthermore, it would be very useful if the learned 
parameters can be interpreted to provide new insights into 

the task domain.  For example, for the syllable-proximity 
evaluation task, it would be very helpful if the learned 
parameters of the aggregation operator could be used to 
ascertain the relative importance and interaction patterns of 
various AF dimensions based on a specific set of training 
data. 

In this paper, we use a fuzzy-integration-based aggregation 
operator [5][7] that possesses the desired properties 
mentioned above.  We also describe how the parameters of 
the fuzzy integration can be automatically derived from 
training data by recasting the syllable-proximity evaluation 
into a classification problem.  Using experimental results 
with real speech material, we show how insights into 
syllable-proximity evaluation can be gained from 
principled interpretation of the learned fuzzy measure. 

The remainder of this paper is organized as follows.  
Section II describes the syllable-proximity evaluation 
problem within a multiple-information aggregation 
framework.  Section III introduces the fuzzy-integration-
based aggregation method.  Sections IV and V describe an 
experiment pertaining to syllable-proximity evaluation 
using the fuzzy-integration-based aggregation.  Section VI 
provides a brief summary of the conclusions. 

II. SYLLABLE- PROXIMITY EVALUATION AND 
MULTIPLE-INFORMATION AGGREGATION 

Conventional models of ASR (at least for English and 
many other Indo-European languages) assume that words 
are readily decomposable into constituent phonetic 
components (“phonemes”).  A detailed evaluation of state-
of-the-art speech recognition systems indicates that the 
conventional phonemic “beads-on-a-string” approach is of 
limited utility, particularly with respect to informal, 
conversational material [8].  In [1], a syllable-based, multi-
tier model of ASR is introduced that explicitly relates 
articulatory features, syllable structure and stress accent to 
lexical representation.  Articulatory features are the basic 
building blocks of the phonetic tier of speech; they are 
used to describe the abstract configuration of the vocal 
tract during speaking (e.g., manner and place of 
articulation, etc).   It was shown that the realization of 
articulatory features is systematically related to syllable 
position and stress accent level; together, they provide a 
means to accurately and parsimoniously model 
pronunciation variation in spontaneous speech.  Because 



the multi-tier model used in the recognition application (cf. 
Fig. 1) entails many processing steps that lie outside of the 
scope of the present paper, we focus here on the 
computation of syllable proximity associated with a pair of 
input and reference syllable segments (cf. [1] for further 
details about the multi-tier model). 

Between each pair of input and reference syllable 
segments, a partial syllable-proximity score is separately 
computed along each of the AF dimensions (i.e., manner 
of articulation, place of articulation, voicing, lip-rounding, 
etc.).  The computation of each partial syllable-proximity 
score associated with each AF dimension involves a series 
of neural-network-based AF classification and 
segmentation processes, as well as application of 
probabilistic models pertaining to pronunciation variation 
(cf. Fig. 1 and [1]).  Within the context of the multi-tier 
model, distributing this computation among various AF 
dimensions has several distinct advantages relative to 
conventional approaches, including (1) simplicity and 
robustness of computation, as well as (2) the capability of 
accurately encapsulating the sort of pronunciation 
variation that characterizes spontaneous speech.  The 
partial syllable-proximity scores have to be combined 
appropriately in order to form a unitary syllable-proximity 
score capable of being used in the subsequent word-
hypothesis evaluation component of the recognition 
process.  Thus, the task is essentially that for each pair of 
input and reference syllable segments, given a set of partial 
syllable-proximity scores along N articulatory-feature 
dimensions, )),x(h,),x(h(H N1 L=  we are interested in 
deriving an appropriate combining operator f( ) that yields 
the desired combined score )H(fy = . This formulation 

of the syllable-proximity evaluation can be regarded as an 
example of a general class of multiple-information 
aggregation problems. 

Multiple-information aggregation usually refers to the 
combining of results from the processing of multiple 
information sources to form a single overall end-result.  
Many important real-world problems can be formulated 
within such an aggregation framework (e.g., multi-criteria 
decision-making and multi-attribute classification).  A 
common property of such problems is that a preliminary, 

partial decision or classification score can be obtained 
separately for each of the information sources; it is often 
difficult (or at least undesirable) to model directly the 
relationship between the raw inputs associated with all of 
the information sources and the final, combined evaluation 
result.  For example, each partial score may be obtained 
from an unknown procedure, as would be the case for 
fusion of multiple subjective evaluations.   This procedure 
would also allow each partial score to be determined in a 
manner that is both simpler and more robust than could be 
obtained through direct computation of the final score. 

There exist a variety of aggregation operators that can be 
used for f( ), such as the arithmetic or geometric mean, 
linearly weighted average, ordered weighted average, non-
linear neural networks, etc.  Each operator possesses 
certain distinctive properties; selecting an appropriate 
aggregation operator depends crucially on the 
characteristics of the particular application.  With respect 
to the syllable-proximity evaluation, different AF 
dimensions contribute in varying measure to the 
computation of syllable proximity and therefore should be 
assigned different weights in the combining process. 
Moreover, the partial scores associated with various AF 
dimensions are not orthogonal; there is a significant degree 
of coupling among them. Thus, a simple linear 
combination of the partial scores is incapable of capturing 
the redundancy and synergy of the information associated 
with various subsets of AF dimensions; a highly non-linear 
process is required in its place. Because the relationship 
among the partial scores associated with different AF 
dimensions can be quite complex, the aggregation operator 
should be flexible in its ability to extract information from 
heterogeneous sources without prior specification of their 
inter-relationship. On the other hand, good interpretability 
of the aggregation method is desired, especially for 
diagnostic experiments in which we would like to ascertain 
the relative importance and interaction of various AF 
dimensions to the combined decision.  Interpretability of 
parameters would also be of help in the selection of the 
most appropriate AF dimensions to use.  As described in 
the following section, a fuzzy-integration-based 
aggregation operator possesses a number of properties 
ideally suited to this task. 
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Fig. 1. Major components of the syllable-based, multi-tier model of automatic speech recognition [1].  The present paper focuses on the step enclosed in
the dashed box. 



III. FUZZY INTEGRATION AS AN AGGREGATION 
OPERATOR 

Over the past several years, a fuzzy-integration-based 
approach has become increasingly popular for multiple-
information aggregation [10].  There have been a number 
of successful applications of this approach in multi-criteria 
decision-making (e.g., [7][11]), multi-attribute 
classification and pattern recognition (e.g., [5][6][9][13]).  
This approach combines decision or classification scores 
from multiple information sources into a single composite 
score by applying a fuzzy integral with respect to a 
designated fuzzy measure, representing differential 
weighting of scores derived from a variety of information 
sources.  In this section we briefly review the concepts of 
fuzzy measure and fuzzy integral, and then discuss the 
advantages of the approach for multiple-information 
aggregation with specific application to syllable-
proximity-score aggregation. 

The concept of fuzzy measure was originally introduced 
by Sugeno [15] in the early 1970’s in order to extend the 
classical (probability) measure through relaxation of the 
additivity property. A formal definition of the fuzzy 
measure is as follows: 

Definition 1. Fuzzy measure: Let X be a non-empty finite 
set and Ω a Boolean algebra (i.e. a family of subsets of X 
closed under union and complementation, including the 
empty set) defined on X. A fuzzy measure, g, is a set 
function [ ]1,0g:Ω → defined on Ω, which satisfies the 

following properties: (1) Boundary conditions: 0)(g =φ , 

1)X(g = . (2) Monotonicity: If BA ⊆ , then 

)B(g)A(g ≤ . (3) Continuity: If Ω∈nF  for ∞<≤ n1  

and the sequence }F{ n  is monotonic (in the sense of 

inclusion), then )F(limg)F(glim nnnn ∞→∞→ = .  And (X, 

Ω, g ) is said to be a fuzzy measure space. 

This definition of a fuzzy measure differs from that of a 
probability measure only in terms of the monotonicity 
property.  Because additivity is a special case of 
monotonicity, the probability measure is, in effect, a 
special case of a fuzzy measure. 

 For the syllable-proximity evaluation let 
}x,,x{X N1 L=  represent the set of N articulatory feature 

dimensions under consideration and g, a fuzzy measure, 
represent the contribution of each subset of X (i.e. a set of 
some AF dimensions, including singleton sets) in 
evaluating the proximity between a reference syllable and 
the input. In many situations it is useful to ascertain the 
contribution of a particular AF dimension in the entire 
evaluation process.  However, since each AF dimension is 
included in many subsets of X, the contribution of a 
particular AF dimension cannot be easily discerned from 
the fuzzy measure. A concept from cooperative game 

theory, the Shapley score [14][5], can be applied within 
this context to help in the interpretation. 

Definition 2. Shapley score: Let g be a fuzzy measure on 
X. The Shapley score for every Xxi ∈  is defined by 

)]K(g})i{K(g[
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where X  and K  are the cardinality of X and K, 

respectively. 

A Shapley score, iv , can be interpreted as an average 

value of the contribution that an information source, ix  
alone, provides for all different combinations of 
information sources and it can be verified that Shapley 
scores sum (by necessity) to one. This concept has also 
been extended to computing the interaction of a pair of 
information sources [12], as well as interaction of any 
subset of X [4]. 

Definition 3. Two-way interaction index: Let g be a fuzzy 
measure on X. The two-way interaction index of elements 

Xx,x ji ∈ is defined by 
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where X  and K  are the cardinality of X and K, 

respectively. 

The interaction index, ijI , provides an indication of the 

interaction between the pair of information sources ix  and 

jx . When 0I ij < , there exists a negative interaction 

(redundancy) between information sources, ix  and jx , in 

that the value of the pair ix  and jx  is less than the sum of 

the values of ix  alone and jx  alone when they are 

included into sets of information sources. On the other 
hand, if 0I ij > , there exists a positive interaction 

(synergy) between ix  and jx . In cases where 0I ij = , 

there is no interaction between the pair.  

To combine scores obtained from various information 
sources with respect to a specific fuzzy measure a 
technique based on the concept of the fuzzy integral can be 
applied. There are actually several forms of fuzzy integral 
[5]; the one adopted here is the Choquet integral proposed 
by Murofushi and Sugeno [10]. 

Definition 4 (Choquet) Fuzzy integral: Let (X, Ω, g ) be a 
fuzzy measure space, with }x,,x{X N1 L= . Let 

]1,0[X:h →  be a measurable function. Assume without 

loss of generality that 1)x(h)x(h0 N1 ≤≤≤≤ L , and 



}x,,x,x{A N1iii L+= . The Choquet integral of h with 
respect to the fuzzy measure g is defined by: 

∫ ∑
=

−−=
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An interesting property of the (Choquet) fuzzy integral is 
that if g is a probability measure, the fuzzy integral is 
equivalent to the classical Lebesgue integral and simply 
computes the expectation of h with respect to g in the usual 
probability framework. The fuzzy integral is a form of 
averaging operator in the sense that the value of a fuzzy 
integral is between the minimum and maximum values of 
the h function to be integrated. A number of commonly 
used aggregation operators are special cases of the fuzzy 
integral [6][7], e.g., the min and max operators, the 
weighted sum and the ordered weighted average. A distinct 
advantage of the fuzzy integral as a weighted operator is 
that, using an appropriate fuzzy measure, the weights 
represent not only the importance of individual 
information sources but also the interactions (redundancy 
and synergy) among any subset of the sources.  

The review of fuzzy measure and fuzzy integral above 
describes how they can be used to combine scores 
associated with various AF dimensions into an aggregated 
proximity score. The intuitive interpretation of a fuzzy 
measure allows for the specification of the fuzzy measure 
based on expert knowledge.  However, in practice, it is 
more useful to be able to learn the fuzzy measure directly 
from data and to deduce the contribution patterns 
automatically.  In our application, during the training 
phase, the system has knowledge of which reference 
syllable in a pool of reference syllables best matches the 
input syllable.  We may then recast the syllable-proximity 
evaluation into a classification problem and try to learn the 
fuzzy measure automatically from the data.  That is, for 
each input syllable, we would like to classify it as 
belonging to the appropriate class by selecting the 
reference syllable with the highest fuzzy integral score.  
Intuitively, the fuzzy-measure parameters that perform 
well on the classification problem are very likely to 
provide the desired solution for syllable-proximity 
evaluation.  A discriminative, gradient-based algorithm 
was developed for learning appropriate fuzzy measures for 
the classification problem, based on a similar learning 
scheme developed by Grabisch and Nicholas [6][3].  
Details of the learning algorithm and its derivations are 
described in [1]. 

IV. EXPERIMENTS 

Experiments have been carried out on speech material 
from the OGI Numbers95 corpus [2] consisting of digits 
and numbers extracted from spontaneous American 
English telephone interactions.  Due to the limited scope of 
this paper, we limit the description here to the training and 
testing experiments for syllable-proximity score 

aggregation.  The other components of the recognition 
system are described in detail in [1].  The training data 
consisted of 3,233 utterances (12,510 words, 15,306 
syllables) from a training set and 357 utterances (1,349 
words, 1,650 syllables) from a separate cross-validation 
set.  Testing was performed on 1,206 utterances (4,669 
words, 5,878 syllables).  In these experiments, we 
considered seven separate AF dimensions:  manner of 
articulation, place of articulation, voicing, vocalic height, 
lip-rounding, spectral dynamics (to distinguish between 
monophthongs and diphthongs), and vocalic tenseness 
(most closely related to the intrinsic length of a vocalic 
segment).  For each input syllable, there were 25 reference 
syllables to be evaluated for degrees of proximity.  As 
described in the previous section, we recast the training of 
the aggregation operator into a classification problem.  
That is, based on the degrees of proximity supplied by the 
seven AF dimensions, we sought to classify each input 
syllable as one of 25 reference syllable classes.  A fuzzy-
integration-based aggregation operator was trained using 
the gradient-based method.  For comparison, we also 
performed the same classification experiments using 
several other aggregation operators: (1) “MAX” – the 
maximum operator; (2) “MIN” – the minimum; (3) 
“MEAN” – the arithmetic mean; (4) “WT-AVG” – linearly 
weighted average; (5) “MLP” – multi-layer-perceptron 
neural network. 

V. RESULTS AND DISCUSSION 

Performance of the aggregation methods is shown in 
Table 1 for the syllable-classification task.  The results are 
presented in terms of the percentage of correctly classified 
syllables.  The weights for the linearly weighted average 
(WT-AVG.) were trained using a ridge regression 
technique.  The MLP contained a single hidden layer of 
100 units and was trained using back-propagation.  The 
results show that by taking into account the interaction 
among subsets of information sources, the fuzzy-
integration-based technique amply outperforms simpler 
methods such as the arithmetic mean and linearly weighted 
average.  On the other hand, the fuzzy-integration-based 
technique performed at a level close to the MLP-based 
classifier, which is quite powerful in capturing 
complicated non-linear relationships among various inputs.  

However, there is a singular advantage in using the fuzzy-
integration-based method rather than MLPs, namely the 
interpretability of learned parameters.  In many practical 
applications, it is quite useful to understand the 
significance of learned parameters associated with an 
aggregation operator.  For example, knowing how each 

Method MAX MIN MEAN WT- 
AVG 

MLP FUZZY 
INT. 

Accuracy% 33.21 74.77 83.70 84.59 90.56 90.17 

Table 1. Syllable classification accuracy for several aggregation methods. 



information source contributes to the combined result can 
facilitate feature selection in a principled fashion and helps 
in determining the required precision of input features.  
And in many cases the ability to interpret learned 
parameters generates new insights into the task domain, 
such as structural patterns of information sources and 
heuristic rules governing score combination.  Such insights 
can be very helpful in assessing the reliability of a 
classification system and adapting it to new situations.  For 
the current task it is difficult to interpret the significance of 
parameters associated with the MLP classifier despite 
having provided good classification performance.  On the 
other hand, the learned parameters of the fuzzy-
integration-based aggregation operator can be easily 
interpreted, particularly with the aid of the Shapley score 
and interaction indices. Fig. 2 shows the mean Shapley 
scores derived from learned fuzzy measures (averaged 
over 15 random trials, along with the range of ±1 standard 
deviation).  It can be observed that both manner and place 
of articulation have above-average Shapley scores, while 
lip-rounding and voicing have far below-average Shapley 
scores.  This pattern suggests that both manner and place 
dimensions contribute significantly to the aggregated 
result, while lip-rounding and voicing dimensions 
contribute relatively little. This result is consistent with 
intuition derived from phonetic and linguistic knowledge, 
as the manner and place dimensions are expected a priori 
to provide the greatest amount of information pertaining to 
lexical discrimination. 

In order to gain further insights into the interaction patterns 
associated with various AF dimensions in the recognition 
process the interaction indices (cf. Section III) were 
computed for pairs of AF dimensions from the trained 
fuzzy measures, as illustrated in Fig. 3.  For each pair of 
AF dimensions, the size of each square (below the minor 
diagonal) corresponds to the interaction index between the 

two AF dimensions indicated by the labels on the 
horizontal and vertical axes.  A light-colored square 
indicates positive interaction (i.e., synergy) while dark-
colored squares reflect negative interaction (i.e., 
redundancy).  For example, the large positive interaction 
between voicing and manner suggests these two 
dimensions considered together contribute more to 
recognition than when considered separately.  In tandem 
with the Shapley scores, the interaction indices can be used 
to estimate the utility associated with each AF dimension.  
For example, the “lip-rounding" dimension has a relatively 
small Shapley score and mostly small or negative 
interactions with other AF dimensions, and thus may be 
removed from consideration without great impact on 
classification performance.  On the other hand, although 
the voicing dimension has a low Shapley score by itself, it 
may still be of significant utility because of the large 
positive interaction between voicing and manner (as well 
as place of articulation). 

It should be noted that the fuzzy measure was learned 
using only the set of training data from the Numbers95 
corpus (cf. Section IV).  Values of the learned parameters 
reflect a significant number of idiosyncratic characteristics 
of the corpus as well as procedures used for obtaining 
preliminary syllable-proximity evaluation along individual 
AF dimensions.    Thus, all of the importance and 
interaction patterns associated with the fuzzy-measure 
interpretation need not necessarily agree with prior 
linguistic knowledge in general.  This property can be very 
valuable for understanding the characteristics of particular 
tasks, especially those that lack prior expert knowledge.  It 
can also be very helpful in understanding the similarities 
and differences of various task domains. 
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In short, the insights that we have gained from the 
interpretation of learned fuzzy measures agree with our 
intuition that different AF dimensions assume different 
levels of importance with respect to speech recognition.  
Moreover, there is a significant amount of redundant or 
synergetic information among different sets of AF 
dimensions.  Understanding the nature of such interaction 
patterns may prove extremely useful in developing 
appropriate models of speech recognition and for 
improving the performance of ASR systems.  The fuzzy-
integration-based multiple-information aggregation 
framework should also be helpful in many other 
applications that require effective and transparent 
combining of heterogeneous information sources. 

VI. CONCLUSION 

This paper has described a syllable-proximity 
evaluation task in the context of an automatic speech 
recognition application.  We showed how this task fits well 
into a multiple-information aggregation framework.  An 
aggregation operator using fuzzy measures and a fuzzy 
integral was described, which possesses a number of 
desired properties such as the ability to capture the 
importance, synergy and redundancy of various 
information sources.  Fuzzy-measure parameters involved 
in the aggregation operator can be automatically learned 
from training data by recasting the syllable-proximity 
evaluation as a classification problem.  Experiments using 
spontaneous speech material have shown that fuzzy 
measures and a fuzzy integral possess many advantages 
relative to other techniques for aggregating partial results 
from multiple information sources, in terms of both 
performance and interpretability.  The interpretation of the 
learned fuzzy measure provides new insights into the 
interaction patterns among various articulatory-feature 
dimensions for the syllable-proximity evaluation. 
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